RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2025 Volume 31, Number 1, Pages 66–76 (Mi timm2152)

Isoorderly permutable subgroups of finite groups

X. Yia, S. F. Kamornikovb, V. N. Tyutyanovc

a Zhejiang Sci-tech University
b Francisk Skorina Gomel State University
c Gomel Branch of International University "MITSO"

Abstract: Let $A$ and $B$ be subgroups of a finite group $G$. Then the subgroup $A$ is called: isoorderly permutable with $B$ if there is a subgroup $C$ of $G$ such that $|C| = |B|$ and $AC = CA$, hereditarily isoorderly permutable with $B$ if $A$ is isoorderly permutable with $B$ in any subgroup of $G$ containing $A$ and $B$, isoorderly permutable in $G$ if $A$ is isoorderly permutable with every subgroup of $G$, and hereditarily isoorderly permutable in $G$ if $A$ is hereditarily isoorderly permutable with every subgroup of $G$. In this paper, the properties of isoorderly permutable subgroups are analyzed, and the structure of a finite group $G$ all of whose minimal subgroups are hereditarily isoorderly permutable is studied.

Keywords: finite group, isoorderly permutable subgroup, hereditarily isoorderly permutable subgroup, minimal subgroup.

UDC: 512.542

MSC: 20D10

Received: 23.08.2024
Revised: 08.10.2024
Accepted: 14.10.2024

DOI: 10.21538/0134-4889-2025-31-1-fon-02



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025