RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2009 Volume 15, Number 2, Pages 162–176 (Mi timm232)

This article is cited in 2 papers

On the automorphism group of the Aschbacher graph

A. A. Makhnev, D. V. Paduchikh

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: A Moore graph is a regular graph of degree $k$ and diameter $d$ with $v$ vertices such that $v\le1+k+k(k-1)+\dots+k(k-1)^{d-1}$. It is known that a Moore graph of degree $k\ge3$ has diameter 2, i.e., it is strongly regular with parameters $\lambda=0$, $\mu=1$ and $v=k^2+1$, where the degree $k$ is equal to 3, 7, or 57. It is unknown whether there exists a Moore graph of degree $k=57$. Aschbacher showed that a Moore graph with $k=57$ is not a graph of rank 3. In this connection, we call a Moore graph with $k=57$ the Aschbacher graph and investigate its automorphism group $G$ without additional assumptions (earlier, it was assumed that $G$ contains an involution).

Keywords: automorphism group of a graph, Moore graph, strongly regular graph.

UDC: 519.17+512.54

Received: 10.12.2008


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2009, 267, suppl. 1, S149–S163

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025