RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2008 Volume 14, Number 2, Pages 174–181 (Mi timm33)

Algebra and Topology

Minimal embeddings of topological spaces into the real line

M. A. Patrakeev


Abstract: A theorem describing $\mathbb R$-minimal topological spaces is proved. These are spaces $(X,\tau)$ topologically embeddable into the real line $\mathbb R$ and not possessing this property under the replacement of $\tau$ by a weaker topology.

UDC: 515.125+515.126

Received: 16.02.2008


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2008, 263, suppl. 2, S172–S180

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025