RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2008 Volume 14, Number 3, Pages 99–111 (Mi timm44)

This article is cited in 1 paper

The Wirtinger–Steklov inequality between the norm of a periodic function and the norm of the positive cutoff of its derivative

E. A. Zernyshkina

Ozersk Technology Institute

Abstract: We study the sharp constant in the inequality between the $L_p$-mean ($p\ge0$) of a $2\pi$-periodic function with zero mean value and the $L_q$-norm ($q\ge1$) of the positive cutoff of its derivative. We obtain estimates of the constant from below for $0\le p\le\infty$ and from above for $1\le p\le\infty$ for an arbitrary $1\le q\le\infty$. We write out the values of the sharp constant in the cases $p=2$, $1\le q\le\infty$ and $p=\infty$, $1\le q\le\infty$.

UDC: 517

Received: 01.03.2008


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2009, 264, suppl. 1, S199–S213

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025