Abstract:
We study the problem of the appearance of nonsmooth singularities in the evolution of plane wavefronts in the Dirichlet problem for a first-order partial differential equation. The approach to investigating the singularities is based on the properties of local diffeomorphisms. A generalization of the classical notion of a derivative is introduced, which coincides in particular cases with the Schwarz derivative. The results of modeling solutions of nonsmooth dynamic problems are presented.