RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2010 Volume 16, Number 3, Pages 45–60 (Mi timm574)

This article is cited in 12 papers

On the structure of finite groups isospectral to an alternating group

I. A. Vakula

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: It is proved that every finite group isospectral to an alternating group $A_n$ of degree $n$ greater than 21 has a chief factor isomorphic to an alternating group $A_k$, where $k\le n$ and the half-interval $(k,n]$ contains no primes.

Keywords: finite groups, alternating groups, spectrum of a group, isospectral groups, chief factors.

UDC: 512.542.52

Received: 22.03.2010


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, 272, suppl. 1, S271–S286

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024