RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2010 Volume 16, Number 4, Pages 18–30 (Mi timm637)

Approximation of the Hardy–Sobolev class of functions analytic in a half-plane by entire functions of exponential type

R. R. Akopyan

Ozersk Technology Institute

Abstract: We study the value $\mathcal E_\sigma(H^p_n)_{H^p}$ of the best approximation in the norm of the Hardy space $H^p$ for $1\le p\le\infty$ of the Hardy–Sobolev class $H_n^p$ of functions analytic in a half-plane with bounded $H^p$-norm of the $n$th-order derivative by entire functions of exponential type not exceeding $\sigma$. The equality $\mathcal E_\sigma(H^p_n)_{H^p}=\sigma^{-n}$ is proved. A linear method providing the best approximation of the class is constructed.

Keywords: Hardy class, approximation of functions, entire functions of exponential type.

UDC: 517.977

Received: 11.01.2010



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025