RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2010 Volume 16, Number 4, Pages 31–37 (Mi timm638)

This article is cited in 2 papers

On the growth rate of arbitrary sequences of double rectangular Fourier sums

N. Yu. Antonov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: The theorem is proved that an arbitrary sequence $\{S_{m_k,n_k}(f,x,y)\} _{k=1}^\infty$ of double rectangular Fourier sums of any function from the class $L(\ln^+L)^2([0,2\pi)^2)$ satisfies almost everywhere the relation $S_{m_k,n_k}(f,x,y)=o(\ln k)$.

Keywords: multiple trigonometric Fourier series, almost everywhere convergence.

UDC: 517.518

Received: 30.11.2009


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2011, 273, suppl. 1, S14–S20

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025