RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2010 Volume 16, Number 4, Pages 79–86 (Mi timm643)

This article is cited in 4 papers

$L$-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials

N. A. Baraboshkina

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: A linear combination $\Pi_{q,\alpha}=\cos(\alpha\pi/2)P+\sin(\alpha\pi/2)Q$ of the Poisson kernel $P(t)=1/2+q\cos t+q^2\cos2t+\dots$ and its conjugate kernel $Q(t)=q\sin t+q^2\sin2t+\dots$ is considered for $\alpha\in\mathbb R$ and $|q|<1$. A new explicit formula is found for the value $E_{n-1}(\Pi_{q,\alpha})$ of the best approximation in the space $L=L_{2\pi}$ of the function $\Pi_{q,\alpha}$ by the subspace of trigonometric polynomials of order at most $n-1$. Namely, it is shown that
$$ E_{n-1}(\Pi_{q,\alpha})=\frac{|q|^n(1-q^2)}{1-q^{4n}}\left\|\frac{\cos(nt-\alpha\pi/2)-q^{2n}\cos(nt+\alpha\pi/2)}{1+q^2-2q\cos t}\right\|_L. $$
Besides, the value $E_{n-1}(\Pi_{q,\alpha})$ is represented as a rapidly converging series.

Keywords: trigonometric approximation, Poisson kernel.

UDC: 517.51

Received: 20.05.2010


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2011, 273, suppl. 1, S59–S67

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025