RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2010 Volume 16, Number 4, Pages 156–165 (Mi timm650)

Approximation by third-order local $\mathcal L$-splines with uniform nodes

P. G. Zhdanova, V. T. Shevaldinb

a Ural State University
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: For a third-order linear differential operator of the form $\mathcal L_3=(D-\beta)(D-\gamma)(D-\delta)$ ($D$ is the differentiation symbol and $\beta,\gamma$, and $\delta$ are pairwise distinct real numbers) on the class of functions $W_\infty^{\mathcal L_2}$, where $\mathcal L_2=(D-\beta)(D-\gamma)$, a sharp pointwise estimate is found for the error of approximation by local noninterpolational $\mathcal L$- spines with uniform nodes corresponding to the operator $\mathcal L_3$; these splines were constructed by the authors earlier.

Keywords: approximation, local $\mathcal L$-splines, uniform nodes.

UDC: 517.5

Received: 01.02.2010



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024