RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2010 Volume 16, Number 4, Pages 180–192 (Mi timm652)

This article is cited in 13 papers

Dunkl theory and Jackson inequality in $L_2(\mathbb R^d)$ with power weight

A. V. Ivanov, V. I. Ivanov

Tula State University

Abstract: We prove a sharp Jackson inequality in $L_2(\mathbb R^d)$ with the weight $v_k(x)=\prod_{\alpha\in\mathbb R_+}|(\alpha,x)|^{2k(\alpha)}$ defined by the positive subsystem $R_+$ of a finite system of roots $R\subset\mathbb R^d$ and by a function $k(\alpha)\colon R\to\mathbb R_+$ invariant under the reflection group generated by $R$.

Keywords: reflection group, Dunkl transform, best approximation, modulus of continuity, Jackson inequality.

UDC: 517.5

Received: 08.02.2010


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, 273, suppl. 1, S86–S98

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024