RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2010 Volume 16, Number 4, Pages 203–210 (Mi timm654)

This article is cited in 1 paper

Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series

S. V. Konyagin

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: If an increasing sequence $\{n_m\}$ of positive integers and a modulus of continuity $\omega$ satisfy the condition $\sum_{m=1}^\infty\omega(1/n_m)/m<\infty$, then it is known that the subsequence of partial sums $S_{n_m}(f,x)$ converges almost everywhere to $f(x)$ for any function $f\in H_1^\omega$. We show that this sufficient convergence condition is close to a necessary condition for a lacunary sequence $\{n_m\}$.

Keywords: Fourier series, Lebesgue measure, modulus of continuity.

UDC: 517.518.452

Received: 17.02.2010


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2011, 273, suppl. 1, S99–S106

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025