RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2011 Volume 17, Number 3, Pages 55–59 (Mi timm720)

Note on estimates for the growth order of sequences of multiple rectangular Fourier sums

N. Yu. Antonovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University

Abstract: Let $\{S_{\mathbf n_k}(f,\mathbf x)\}_{k=1}^\infty$ be some sequence of rectangular partial sums of the multiple trigonometric Fourier series of a function $f$, and let $\{\lambda_k\}_{k=1}^\infty$ be a nondecreasing sequence of positive numbers. We investigate conditions on the belonging of the function $f$ to the classes $\varphi (L)$ under which estimates of the following form are possible:
$$ S_{\mathbf n_k}(f,\mathbf x)=o(\lambda_k )\quad\text{a.e.} $$
where the right-hand side depends on $k$ only.

Keywords: multiple trigonometric Fourier series, growth order estimates.

UDC: 517.518

Received: 30.03.2011


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2012, 277, suppl. 1, S4–S8

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025