RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2011 Volume 17, Number 3, Pages 60–70 (Mi timm721)

This article is cited in 7 papers

Kolmogorov-type inequalities for the norms of Riesz derivatives of multivariable functions and some applications

V. F. Babenkoab, N. V. Parfinovicha

a Dnepropetrovsk National University
b Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences

Abstract: Let $L_{\infty,s}^1(\mathbb R^m)$ be the space of functions $f\in L_\infty(\mathbb R^m)$ such that $\partial f/\partial x_i\in L_s(\mathbb R^m)$ for each $i=1,\dots,m$. New sharp Kolmogorov-type inequalities are obtained for the norms of the Riesz derivatives $\|D^\alpha f\|_\infty$ of functions $f\in L_{\infty,s}^1(\mathbb R^m)$. Stechkin's problem on the approximation of unbounded operators $D^\alpha$ by bounded operators on the class of functions $f\in L_{\infty,s}^1(\mathbb R^m)$ such that $\|\nabla f\|_s\le1$, as well as the problem on the optimal reconstruction of the operator $D^\alpha$ on elements of this class given with error $\delta$, is solved.

Keywords: fractional derivative, Kolmogorov-type inequalities, approximation of operators.

UDC: 517.5

Received: 30.12.2010


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2012, 277, suppl. 1, S9–S20

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025