RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2011 Volume 17, Number 4, Pages 3–18 (Mi timm745)

This article is cited in 5 papers

Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs

V. A. Baranskii, T. A. Sen'chonok

Ural Federal University

Abstract: The purpose of the paper is to prove the following theorem. Let integers $n,t$, and $h$ be such that $0<t<n$ and $h\leq3$. Then, any complete $t$-partite graph with nontrivial parts that has height $h$ in the lattice $NPL(n,t)$ is chromatically unique.

Keywords: integer partition, lattice, graph, complete multipartite graph, chromatic polynomial, chromatic uniqueness.

UDC: 519.174

Received: 06.05.2011


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2012, 279, suppl. 1, 1–16

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024