RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2011 Volume 17, Number 4, Pages 114–120 (Mi timm756)

This article is cited in 3 papers

On the commutation graph of cyclic $TI$-subgroups in linear groups

N. D. Zyulyarkina

South Ural State University

Abstract: We study the commutation graph $\Gamma (A)$ of a cyclic $TI$-subgroup $A$ of order 4 in a finite group $G$ with quasisimple generalized Fitting subgroup $F^*(G)$. It is proved that, if $F^*(G)$ is a linear group, then the graph $\Gamma (A)$ is either a coclique or an edge-regular but not coedge-regular graph.

Keywords: finite group, cyclic $TI$-subgroup, commutation graph.

UDC: 519.17+512.54


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2012, 279, suppl. 1, 175–181

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024