RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2012 Volume 18, Number 2, Pages 48–61 (Mi timm807)

This article is cited in 2 papers

On Friedrichs inequalities for a disk

R. R. Gadyl'shin, E. A. Shishkina

Bashkir State Pedagogical University

Abstract: We consider the Friedrichs inequality for functions defined on a disk of unit radius $\Omega$ and equal to zero on almost all boundary except for an arc $\gamma_\varepsilon$ of length $\varepsilon$, where $\varepsilon$ is a small parameter. Using the method of matched asymptotic expansions, we construct a two-term asymptotics for the Friedrichs constant $C(\Omega,\partial\Omega\backslash\overline\gamma_\varepsilon)$ for such functions and present a strict proof of its validity. We show that $C(\Omega,\partial\Omega\backslash\overline\gamma_\varepsilon)=C(\Omega,\partial\Omega)+\varepsilon^2C(\Omega,\partial\Omega)(1+O(\varepsilon^{2/7}))$. The calculation of the asymptotics for the Friedrichs constant is reduced to constructing an asymptotics for the minimum value of the operator $-\Delta$ in the disk with Neumann boundary condition on $\gamma_\varepsilon$ and Dirichlet boundary condition on the remaining part of the boundary.

Keywords: Friedrichs inequality, small parameter, eigenvalue, asymptotics.

UDC: 517.956

Received: 29.09.2011


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, 281, suppl. 1, 44–58

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024