RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2012 Volume 18, Number 2, Pages 245–253 (Mi timm826)

This article is cited in 3 papers

Asymptotics of the Gurevich–Pitaevskii universal special solution of the Korteweg–de Vries equation as $|x|\to\infty$

B. I. Suleimanov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences

Abstract: A complete asymptotic expansion as $x\to\pm\infty$ of the Gurevich–Pitaevskii universal special solution of the Korteweg–de Vries equation $u_t+u_{xxx}+uu_x=0$ is constructed and validated. The expansion is infinitely differentiable in the variables $t$ and $x$ and, together with the asymptotic expansions of all its derivatives in independent variables, is uniform on any compact interval of variation of the time $t$.

Keywords: Korteweg–de Vries equation, nonlinear Schrödinger equation, isomonodromy, asymptotic expansion.

UDC: 517.9

Received: 27.09.2011


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplement Issues), 2013, 281, suppl. 1, S137–S145

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025