RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2012 Volume 18, Number 3, Pages 10–22 (Mi timm833)

This article is cited in 5 papers

$ABA$-groups with cyclic subgroup $B$

B. Amberga, L. S. Kazarinb

a Johannes Gutenberg-Universität, Mainz
b Кафедра алгебры и мат. логики, Ярославский гос. университет им. П. Г. Демидова

Abstract: Some criteria to the solubility of groups of the form $G=ABA$ with a nilpotent subgroup $A$ and a cyclic subgroup $B$ are derived. In particular, it is proved (using the classification of the finite simple groups) that the finite group $G=ABA$ is soluble if $A$ is a nilpotent group of odd order and $B$ is a cyclic group and $(|A|,|B|)=1$.

Keywords: simple group, Lie type group, sporadic simple group.

UDC: 512.54

Received: 30.01.2012

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025