RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2012 Volume 18, Number 3, Pages 247–260 (Mi timm859)

This article is cited in 3 papers

The computational complexity and approximability of a series of geometric covering problems

M. Yu. Khachaiab, M. I. Poberiib

a Ural Federal University
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: We consider a series of geometric problems on the covering of finite subsets of finite-dimensional numerical spaces by minimal families of hyperplanes. We prove that the problems are hard and Max-SNP-hard.

Keywords: $NP$-complete problem, polynomial-time reduction, Max-SNP-hard problem, $L$-reduction, polynomial-time approximation scheme (PTAS).

UDC: 519.6

Received: 26.03.2012


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, 283, suppl. 1, 64–77

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024