RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2012 Volume 18, Number 4, Pages 211–223 (Mi timm880)

This article is cited in 1 paper

Nonnegativity set of smallest measure for polynomials with zero weighted mean value on a closed interval

S. V. Kuznetsova, K. S. Tikhanovtsevab

a "Applied Technologies"
b Institute of Mathematics and Computer Science, Ural Federal University

Abstract: Let $\mathcal P_n(\varphi^{(\alpha)})$ be the set of algebraic polynomials $p_n$ of order $n$ with real coefficients and zero weighted mean value with respect to the ultraspherical weight $\varphi^{(\alpha)}(t)=(1-t^2)^\alpha$ on the interval $[-1,1]$: $\int_{-1}^1\varphi^{(\alpha)}(t)p_n(t)\,dx=0$. We study the problem on the smallest possible value $\inf\{\mu(p_n)\colon p_n\in\mathcal P_n(\varphi^{(\alpha)})\}$ of the measure $\mu(p_n)=\int_{\mathcal X(p_n)}\varphi^{(\alpha)}(t)\,dt$ of the set $\mathcal X(p_n)=\{t\in[-1,1]\colon p_n(t)\ge0\}$ of points of the interval at which the polynomial $p_n\in\mathcal P_n(\varphi^{(\alpha)})$ is nonnegative. In this paper, the properties of an extremal polynomial of this problem are studied and an exact solution is presented for the case of cubic polynomials.

Keywords: algebraic polynomials, polynomials with zero weighted mean value, ultraspherical weight.

UDC: 517.518.86

Received: 06.01.2012



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025