RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2012 Volume 18, Number 4, Pages 315–327 (Mi timm889)

This article is cited in 2 papers

On the exact values of mean $\nu$-widths of some classes of entire functions

M. Sh. Shabozova, G. A. Yusupovb

a Institute of Mathematics, Academy of Sciences of Republic of Tajikistan
b Tajik National University

Abstract: We find the exact values of various $\nu$-widths for some classes of functions $f\in L_2^{(r)}(\mathbb R)$ differentiable on the axis $\mathbb R=(-\infty;+\infty)$ and satisfying the condition
$$ \Bigg(\int_0^h\Omega_m^q(f^{(r)},t)\,dt\Bigg)^{1/q}\leq\Phi(h), $$
where $r,m\in\mathbb N$, $1/r<q\leq2$, $0<h\le\pi$, $\Omega_m(f^{(r)},t)_2$ is the generalized modulus of continuity of $m$th order of the derivative $f^{(r)}\in L_2(\mathbb R)$, and $\Phi(t)$ is an arbitrary continuous function increasing on $t\ge0$ and such that $\Phi(0)=0$.

Keywords: spaces of measurable function, entire functions of exponential type $\sigma$, modulus of continuity of $m$th order, exact constant.

UDC: 517.5

Received: 23.11.2011



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025