RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2013 Volume 19, Number 2, Pages 34–47 (Mi timm930)

This article is cited in 20 papers

Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere

V. V. Arestovab, M. V. Deikalovaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Institute of Mathematics and Computer Science, Ural Federal University

Abstract: We study the sharp Nikol'skii inequality between the uniform norm and $L_q$ norm of algebraic polynomials of a given (total) degree $n\ge1$ on the unit sphere $\mathbb S^{m-1}$ of the Euclidean space $\mathbb R^m$ for $1\le q<\infty$. We prove that the polynomial $\varrho_n$ in one variable with unit leading coefficient, that deviates least from zero in the space $L_q^\psi(-1,1)$ of functions $f$ such that $|f|^q$ is summable on $(-1,1)$ with the Jacobi weight $\psi(t)=(1-t)^\alpha(1+t)^\beta$, $\alpha=(m-1)/2$, $\beta=(m-3)/2$, as a zonal polynomial in one variable $t=\xi_m$, $x=(\xi_1,\xi_2,\dots,\xi_m)\in\mathbb S^{m-1}$, is (in a certain sense, unique) extremal in the Nikol'skii inequality on the sphere $\mathbb S^{m-1}$. The corresponding one-dimensional inequalities for algebraic polynomials on a closed interval are discussed.

Keywords: multidimensional euclidean sphere, algebraic polynomials, Nikol'skii inequality, polynomials that deviate least from zero.

UDC: 517.518.86

Received: 07.11.2012


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, 284, suppl. 1, 9–23

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025