RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2013 Volume 19, Number 3, Pages 104–112 (Mi timm967)

This article is cited in 3 papers

Asymptotic estimates for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints

A. R. Danilinab, N. S. Korobitsynab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University named after B. N. Yeltsin

Abstract: An optimal control problem is considered for solutions of a boundary value problem for a second-order ordinary differential equation on a closed interval with a small parameter at the second derivative. The control is scalar and satisfies geometric constraints. General theorems on approximation are obtained. Two leading terms of an asymptotic expansion of the solution are constructed and an error estimate is obtained for these approximations.

Keywords: optimal control, time-optimal problem, asymptotic expansion, singular perturbation problems, small parameter.

UDC: 517.977

Received: 21.03.2013


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, 285, suppl. 1, S58–S67

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024