RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2013 Volume 19, Number 3, Pages 150–157 (Mi timm972)

This article is cited in 2 papers

On Ditsman's lemma

L. S. Kazarin

P. G. Demidov Yaroslavl State University

Abstract: Let $H$ be a subgroup of a group $G$ generated by a finite $G$-invariant subset $X=\bigcup_{i=1}^kC_i$ that consists of elements of finite order, where $C_i$ is the class of conjugate elements of $G$ with representative $a_i$. We prove that
$$ |H|\leq\prod_{i=1}^ko(a_i)^{|C_i|}, $$
where $o(a_i)$ is the order of the element $a_i\in C_i$. Best estimates are obtained for some important special cases.

Keywords: simple group, Lie type group, sporadic simple group, quasisimple group.

UDC: 512.54

Received: 22.01.2013


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, 285, suppl. 1, S91–S98

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025