RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2013 Volume 19, Number 3, Pages 179–186 (Mi timm975)

This article is cited in 7 papers

On the behavior of elements of prime order from a Zinger cycle in representations of a special linear group

A. S. Kondrat'evab, A. A. Osinovskayac, I. D. Suprunenkoc

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University named after B. N. Yeltsin
c Institute of Mathematics of the National Academy of Sciences of Belarus

Abstract: Let $G=SL_n(q)$, where $n\geq2$ and $q$ is a power of a prime $p$. A Zinger cycle of the group $G$ is its cyclic subgroup of order $(q^n-1)/(q-1)$. Here absolutely irreducible $G$-modules over a field of the defining characteristic $p$ where an element of a fixed prime order $m$ from a Zinger cycle of $G$ acts freely are classified in the following three cases: a) the residue of $q$ modulo $m$ generates the multiplicative group of the field of order $m$ (in particular, this holds for $m=3$); b) $m=5$; c) $n=2$.

Keywords: special linear group, Zinger cycle, absolutely irreducible module, free action of an element.

UDC: 512.542

Received: 07.07.2013


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, 285, suppl. 1, S108–S115

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024