RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2013 Volume 19, Number 3, Pages 207–214 (Mi timm978)

This article is cited in 10 papers

On strongly regular graphs with eigenvalue $\mu$ and their extensions

A. A. Makhnevab, D. V. Paduchikha

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Ural Federal University named B. N. Yeltsin

Abstract: Let $\mathcal M$ be a class of strongly regular graphs for which $\mu$ is a non-principal eigenvalue. Note that the neighborhood of any vertex of an $AT4$ graph lies in $\mathcal M$. We describe parameters of graphs from $\mathcal M$ and find intersection arrays of $AT4$ graphs in which neighborhoods of vertices lie in chosen subclasses from $\mathcal M$. In particular, an $AT4$ graph in which the neighborhoods of vertices do not contain triangles is the Conway–Smith graph with parameters $(p,q,r)=(1,2,3)$ or the first Soicher graph with parameters $(p,q,r)=(2,4,3)$.

Keywords: strongly regular graph, $AT4$-graph, locally $\mathcal M$-graph.

UDC: 519.17

Received: 25.01.2013


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, 285, suppl. 1, S128–S135

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025