Abstract:
This paper presents the results of an experimental comparison of methods for the synthesis of combinational logic circuits that implement specified Boolean functions. The following methods were considered: the method of Akers, bi-decomposition, the methods of cascades, Minato-Morreale, Reed-Muller and DSD-decomposition. The comparison was based on an estimate of power, delay and area of synthesized logic circuits. The evaluation was carried out without the process of technology mapping of the circuits. These parameters were chosen because they are the main criteria for technology-independent optimization, where these methods are widely used. Boolean functions with the number of arguments from 4 to 10 were used as input data. They were generated on the basis of information on the frequency of occurrence of various NPN-equivalence classes of Boolean functions of 4 variables. As a result of the study, it was found that the Minato-Morreale method is the most universal in solving technology-independent optimization problems and can be used for different criteria.