RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2004 Volume 246, Pages 20–42 (Mi tm144)

This article is cited in 31 papers

McKay Equivalence for Symplectic Resolutions of Quotient Singularities

R. V. Bezrukavnikova, D. B. Kaledinb

a Northwestern University
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: An arbitrary crepant resolution $X$ of the quotient $V/G$ of a symplectic vector space $V$ by the action of a finite subgroup $G\subset\mathrm{Sp}(V)$ is considered. It is proved that the derived category of coherent sheaves on $X$ is equivalent to the derived category of $G$-equivariant coherent sheaves on $V$.

UDC: 512.7

Received in February 2004


 English version:
Proceedings of the Steklov Institute of Mathematics, 2004, 246, 13–33

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025