RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2001 Volume 232, Pages 218–222 (Mi tm214)

This article is cited in 30 papers

Sharpness of Sobolev Inequalities for a Class of Irregular Domains

D. A. Labutin


Abstract: Recently, O. V. Besov proved the embedding $W^{m}_p(\Omega)\subset L_q(\Omega)$ for the Sobolev spaces of higher orders $m=2,3,\ldots $ over a domain $\Omega\subset\mathbb R^n$ satisfying $s$-John condition. We show that the number $q$ obtained by Besov in this embedding is maximal over the class of $s$-John domains. An unimprovable embedding of the Sobolev spaces $W^1_p(\Omega )$ was found earlier in works of Hajłasz and Koskela and of Kilpeläinen and Malý.

UDC: 517.51

Received in October 2000


 English version:
Proceedings of the Steklov Institute of Mathematics, 2001, 232, 211–215

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025