RUS
ENG
Full version
JOURNALS
// Trudy Matematicheskogo Instituta imeni V.A. Steklova
// Archive
Trudy Mat. Inst. Steklova,
2001
Volume 232,
Pages
248–267
(Mi tm217)
This article is cited in
27
papers
Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on
$\mathbb R_+^{n+1}$
E. Mitidieri
a
,
S. I. Pohozaev
b
a
Dipartimento di Scienze Matematiche, Università degli Studi di Trieste, Via A. Valerio 12/1, 34127, Trieste, Italia
b
Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
Theorems concerning the absence of weak solutions are proved for a wide class of evolution equations and inequalities. This class includes, in particular, the inequalities with degenerate and singular operators of hyperbolic type.
UDC:
517
Received in
August 2000
Fulltext:
PDF file (258 kB)
References
Cited by
English version:
Proceedings of the Steklov Institute of Mathematics, 2001,
232
,
240–259
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025