RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2001 Volume 232, Pages 268–285 (Mi tm218)

This article is cited in 4 papers

Approximation of a Class of Singular Integrals by Algebraic Polynomials with Regard to the Location of a Point on an Interval

V. P. Motornyi

Dnepropetrovsk State University

Abstract: A pointwise approximation of singular integrals $S(f)(x)=\frac 1\pi \int _{-1}^1\frac {f(t)}{t-x}\frac 1{\sqrt {1-t^2}}\,dt$, $x\in (-1,1)$, of functions from the class $W^rH^{\omega }$ by algebraic polynomials is analyzed ($\omega(t)$ is a convex upward modulus of continuity such that $t\omega '(t)$ is a nondecreasing function). The estimates obtained cannot be improved simultaneously for all moduli of continuity.

UDC: 517.5

Received in September 2000


 English version:
Proceedings of the Steklov Institute of Mathematics, 2001, 232, 260–277

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024