RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2001 Volume 235, Pages 36–51 (Mi tm232)

This article is cited in 13 papers

On the Convergence of Continued T-Fractions

V. I. Buslaev

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: It is shown that a continued $\mathrm T$-fraction converges on the set $\{|z|<R_1\} \cup \{|z|>R_2\}$. Formulas (exact in a certain sense) for evaluating the radii $R_1$ and $R_2$ of these disks are given. For a $\mathrm T$-fraction with limit-periodic coefficients, a cut $\Gamma$ on the complex plane is explicitly specified such that this $\mathrm T$-fraction converges outside this cut. It is shown that the meromorphic function represented by this $\mathrm T$-fraction cannot be meromorphically continued (as a single-valued function) across any arc lying on $\Gamma$.

UDC: 517.55

Received in March 2001


 English version:
Proceedings of the Steklov Institute of Mathematics, 2001, 235, 29–43

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024