RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2009 Volume 267, Pages 258–265 (Mi tm2592)

This article is cited in 9 papers

On Eigenvalues of Rectangular Matrices

B. Shapiroa, M. Shapirob

a Department of Mathematics, Stockholm University, Stockholm, Sweden
b Department of Mathematics, Michigan State University, East Lansing, MI, USA

Abstract: Given a $(k+1)$-tuple $A,B_1,\dots,B_k$ of $m\times n$ matrices with $m\le n$, we call the set of all $k$-tuples of complex numbers $\{\lambda_1,\dots,\lambda_k\}$ such that the linear combination $A+\lambda_1B_1+\lambda_2B_2+\dots+\lambda_kB_k$ has rank smaller than $m$ the eigenvalue locus of the latter pencil. Motivated primarily by applications to multiparameter generalizations of the Heine–Stieltjes spectral problem, we study a number of properties of the eigenvalue locus in the most important case $k=n-m+1$.

UDC: 512.643.5

Received in July 2008

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 267, 248–255

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025