RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2009 Volume 267, Pages 214–225 (Mi tm2595)

This article is cited in 6 papers

Global Topological Invariants of Stable Maps from 3-Manifolds to $\mathbb R^3$

C. Mendes de Jesus, R. Oset Sinha, M. C. Romero Fuster

Departament de Geometría i Topología, Facultat de Matemàtiques, Universitat de València, Burjassot, València, Spain

Abstract: With any stable map from a 3-manifold to $\mathbb R^3$, we associate a graph with weights in its vertices and edges. These graphs are $\mathcal A$-invariants from a global viewpoint. We study their properties and show that any tree with zero weights in its vertices and aleatory weights in its edges can be the graph of a stable map from $S^3$ to $\mathbb R^3$.

UDC: 514.74

Received in April 2008

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 267, 205–216

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024