RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2009 Volume 267, Pages 164–181 (Mi tm2597)

This article is cited in 5 papers

Spacelike Surfaces in Anti de Sitter Four-Space from a Contact Viewpoint

S. Izumiyaa, D. Peib, M. C. Romero Fusterc

a Department of Mathematics, Hokkaido University, Sapporo, Japan
b School of Mathematics and Statistics, Northeast Normal University, Changchun, P. R. China
c Departament de Geometría i Topología, Facultat de Matemàtiques, Universitat de València, Burjassot, València, Spain

Abstract: We define the notions of $(S_\mathrm t^1\times S_\mathrm s^2)$-nullcone Legendrian Gauss maps and $S^2_+$-nullcone Lagrangian Gauss maps on spacelike surfaces in anti de Sitter 4-space. We investigate the relationships between singularities of these maps and geometric properties of surfaces as an application of the theory of Legendrian/Lagrangian singularities. By using $S^2_+$-nullcone Lagrangian Gauss maps, we define the notion of $S^2_+$-nullcone Gauss–Kronecker curvatures and show a Gauss–Bonnet type theorem as a global property. We also introduce the notion of horospherical Gauss maps which have geometric properties different from those of the above Gauss maps. As a consequence, we can say that anti de Sitter space has much richer geometric properties than the other space forms such as Euclidean space, hyperbolic space, Lorentz–Minkowski space and de Sitter space.

UDC: 514.74

Received in April 2009

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 267, 156–173

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024