RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2009 Volume 267, Pages 266–279 (Mi tm2606)

Rigidity of Poisson Structures

L. Stolovitch

Laboratoire J.-A. Dieudonné, U. M. R. 6621 du CNRS, Université de Nice–Sophia Antipolis, Nice, France

Abstract: We study germs of analytic Poisson structures which are suitable perturbations of a quasihomogeneous Poisson structure in a neighborhood of the origin of $\mathbb R^n$ or $\mathbb C^n$, a fixed point of the Poisson structures. We define a “diophantine condition” relative to the quasihomogeneous initial part $\mathcal L$ which ensures that such a good perturbation of $\mathcal L$ which is formally conjugate to $\mathcal L$ is also analytically conjugate to it.

UDC: 514.763

Received in February 2009

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 267, 256–269

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025