RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2004 Volume 247, Pages 294–303 (Mi tm27)

This article is cited in 13 papers

On Fractal Peano Curves

E. V. Shchepin

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: It is shown that, for a fractal Peano curve $p(t)$ that maps a unit segment onto a unit square, there always exists a pair of points $t,t'$ of the segment that satisfy the inequality $|p(t)-p(t')|^2\ge 5|t-t'|$. As is clear from the classical Peano–Hilbert curve, the number $5$ in this inequality cannot be replaced by a number greater than $6$ (the result of K. Bauman).

UDC: 519.6

Received in April 2004


 English version:
Proceedings of the Steklov Institute of Mathematics, 2004, 247, 272–280

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025