RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2010 Volume 268, Pages 24–39 (Mi tm2872)

This article is cited in 2 papers

Well-posed infinite horizon variational problems on a compact manifold

A. A. Agrachevab

a Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
b SISSA/ISAS, Trieste, Italy

Abstract: We give an effective sufficient condition for a variational problem with infinite horizon on a compact Riemannian manifold $M$ to admit a smooth optimal synthesis, i.e., a smooth dynamical system on $M$ whose positive semi-trajectories are solutions to the problem. To realize the synthesis, we construct an invariant Lagrangian submanifold (well-projected to $M$) of the flow of extremals in the cotangent bundle $T^*M$. The construction uses the curvature of the flow in the cotangent bundle and some ideas of hyperbolic dynamics.

UDC: 517.97

Received in June 2009


 English version:
Proceedings of the Steklov Institute of Mathematics, 2010, 268, 17–31

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025