RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2010 Volume 269, Pages 143–149 (Mi tm2885)

This article is cited in 10 papers

Sharp estimates for derivatives of functions in the Sobolev classes $\mathring W_2^r(-1,1)$

G. A. Kalyabin

Peoples' Friendship University of Russia, Moscow, Russia

Abstract: Explicit formulas are obtained for the maximum possible values of the derivatives $f^{(k)}(x)$, $x\in(-1,1)$, $k\in\{0,1,\dots,r-1\}$, for functions $f$ that vanish together with their (absolutely continuous) derivatives of order up to $\le r-1$ at the points $\pm1$ and are such that $\|f^{(r)}\|_{L_2(-1,1)}\le1$. As a corollary, it is shown that the first eigenvalue $\lambda_{1,r}$ of the operator $(-D^2)^r$ with these boundary conditions is $\sqrt2(2r)!(1+O(1/r))$, $r\to\infty$.

UDC: 517.518.23+517.927

Received in December 2009


 English version:
Proceedings of the Steklov Institute of Mathematics, 2010, 269, 137–142

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024