RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2010 Volume 270, Pages 220–225 (Mi tm3014)

This article is cited in 1 paper

On the closability and convergence of Dirichlet forms

O. V. Pugachev

Bauman Moscow State Technical University, Moscow, Russia

Abstract: We construct a measure $\mu$ on $\mathbb R^2$ for which the gradient quadratic form is closable, whereas partial quadratic forms are not closable. We obtain new sufficient conditions for the Mosco convergence of Dirichlet forms. This gives effective conditions for the weak convergence of finite-dimensional distributions of diffusion processes.

UDC: 519.217

Received in May 2009


 English version:
Proceedings of the Steklov Institute of Mathematics, 2010, 270, 216–221

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025