RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2010 Volume 270, Pages 170–176 (Mi tm3018)

This article is cited in 1 paper

On decay of the Schrödinger resolvent

E. A. Kopylova

Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia

Abstract: We strengthen the known Agmon–Jensen–Kato decay of the resolvent for a special case of the Schrödinger equation in arbitrary dimension $n\ge1$. The decay is of crucial importance in applications to linear and nonlinear hyperbolic PDEs.

UDC: 517.951

Received in March 2009


 English version:
Proceedings of the Steklov Institute of Mathematics, 2010, 270, 165–171

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025