RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2010 Volume 271, Pages 40–58 (Mi tm3232)

This article is cited in 3 papers

Optimal synthesis in an infinite-dimensional space

V. F. Borisov, M. I. Zelikina, L. A. Manitab

a Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
b Moscow State Institute of Electronics and Mathematics (Technical University), Moscow, Russia

Abstract: For a class of optimal control problems and Hamiltonian systems generated by these problems in the space $l_2$, we prove the existence of extremals with a countable number of switchings on a finite time interval. The optimal synthesis that we construct in the space $l_2$ forms a fiber bundle with piecewise smooth two-dimensional fibers consisting of extremals with a countable number of switchings over an infinite-dimensional basis of singular extremals.

UDC: 517.977

Received in November 2009


 English version:
Proceedings of the Steklov Institute of Mathematics, 2010, 271, 34–52

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024