RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2002 Volume 237, Pages 224–233 (Mi tm334)

This article is cited in 11 papers

The Absence of Arbitrage in a Mixed Brownian–Fractional Brownian Model

Yu. S. Mishuraa, E. Valkeilab

a National Taras Shevchenko University of Kyiv
b University of Helsinki

Abstract: A mixed version of the Black–Merton–Scholes model is considered, i.e. a market with a bond and a stock such that the stock is controlled by a linear combination of a Wiener process and a fractional Brownian motion. It is proved that such a market is arbitrage-free. As an auxiliary result, a representation of a fractional Brownian motion is obtained in terms of the “basic” Gaussian martingale with independent increments.

UDC: 519.21

Received in May 1999


 English version:
Proceedings of the Steklov Institute of Mathematics, 2002, 237, 215–224

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025