RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2012 Volume 276, Pages 173–181 (Mi tm3353)

This article is cited in 1 paper

On universality of the Lerch zeta-function

A. Laurinčikas

Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania

Abstract: It is known that the Lerch zeta-function $L(\lambda,\alpha,s)$ with transcendental parameter $\alpha$ is universal in the Voronin sense; i.e., every analytic function can be approximated by shifts $L(\lambda,\alpha,s+i\tau)$ uniformly on compact subsets of some region. In this paper, the universality for some classes of composite functions $F(L(\lambda,\alpha,s))$ is obtained. In particular, general theorems imply the universality of the functions $\sin(L(\lambda,\alpha,s))$ and $\sinh(L(\lambda,\alpha,s))$.

UDC: 511.33

Received in August 2011


 English version:
Proceedings of the Steklov Institute of Mathematics, 2012, 276, 167–175

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024