RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2012 Volume 276, Pages 131–145 (Mi tm3374)

This article is cited in 1 paper

Identities involving Farey fractions

M. N. Huxley

School of Mathematics, University of Cardiff, Cardiff, Wales, UK

Abstract: The rational numbers $a/q$ in $[0,1]$ can be counted by increasing height $H(a/q)=\max(a,q)$, or ordered as real numbers. Franel's identity shows that the Riemann hypothesis is equivalent to a strong bound for a measure of the independence of these two orderings. We give a proof using Dedekind sums that allows weights $w(q)$. Taking $w(q)=\chi(q)$ we find an extension to Dirichlet L-functions.

UDC: 511.216+511.331

Received in September 2011

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2012, 276, 125–139

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024