RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2012 Volume 276, Pages 213–226 (Mi tm3375)

This article is cited in 2 papers

Jacob's ladders, the structure of the Hardy–Littlewood integral and some new class of nonlinear integral equations

Jan Moser

Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Bratislava, Slovakia

Abstract: In this paper we obtain new formulae for short and microscopic parts of the Hardy–Littlewood integral, and the first asymptotic formula for the sixth-order expression $|\zeta(\frac12+i\varphi _1(t))|^4|\zeta(\frac 12+it)|^2$. These formulae cannot be obtained in the theories of Balasubramanian, Heath-Brown and Ivić.

UDC: 511.331

Received in February 2011

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2012, 276, 208–221

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024