RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2012 Volume 278, Pages 114–128 (Mi tm3395)

This article is cited in 4 papers

Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains

L. M. Kozhevnikovaa, F. Kh. Mukminovb

a Sterlitamak Branch of Bashkir State University, Sterlitamak, Russia
b M. Akmullah Bashkir State Pedagogical University, Ufa, Russia

Abstract: The first initial-boundary value problem with the homogeneous Dirichlet boundary condition and a compactly supported initial function is considered for a model second-order anisotropic parabolic equation in a cylindrical domain $D=(0,\infty)\times\Omega$. We find an upper bound that characterizes the dependence of the decay rate of solutions as $t\to\infty$ on the geometry of the unbounded domain $\Omega\subset\mathbb R_n$, $n\geq3$, and on nonlinearity exponents. We also obtain an estimate for the admissible decay rate of nonnegative solutions in unbounded domains; this estimate shows that the upper bound is sharp.

UDC: 517.956.4

Received in February 2011


 English version:
Proceedings of the Steklov Institute of Mathematics, 2012, 278, 106–120

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025