RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2012 Volume 279, Pages 242–256 (Mi tm3426)

This article is cited in 3 papers

Inversion formulas for complex Radon transform on projective varieties and boundary value problems for systems of linear PDEs

Gennadi M. Henkinab, Peter L. Polyakovc

a Institut de Mathématiques, Université Pierre et Marie Curie, Paris, France
b Central Economics and Mathematics Institute, Russian Academy of Sciences, Moscow, Russia
c Department of Mathematics, University of Wyoming, Laramie, WY, USA

Abstract: Let $G\subset\mathbb C\mathrm P^n$ be a linearly convex compact set with smooth boundary, $D=\mathbb C\mathrm P^n\setminus G$, and let $D^*\subset(\mathbb C\mathrm P^n)^*$ be the dual domain. Then for an algebraic, not necessarily reduced, complete intersection subvariety $V$ of dimension $d$ we construct an explicit inversion formula for the complex Radon transform $R_V\colon H^{d,d-1}(V\cap D)\to H^{1,0}(D^*)$ and explicit formulas for solutions of an appropriate boundary value problem for the corresponding system of differential equations with constant coefficients on $D^*$.

UDC: 517.552+517.554+517.955+512.73

Received in September 2011

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2012, 279, 230–244

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025