RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2013 Volume 280, Pages 67–96 (Mi tm3445)

This article is cited in 32 papers

On congruences with products of variables from short intervals and applications

Jean Bourgaina, Moubariz Z. Garaevb, Sergei V. Konyaginc, Igor E. Shparlinskid

a Institute for Advanced Study, Princeton, NJ, USA
b Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
c Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
d Department of Computing, Macquarie University, Sydney, NSW, Australia

Abstract: We obtain upper bounds on the number of solutions to congruences of the type $(x_1+s)\dots(x_\nu+s)\equiv(y_1+s)\dots(y_\nu +s)\not\equiv0\pmod p$ modulo a prime $p$ with variables from some short intervals. We give some applications of our results and in particular improve several recent estimates of J. Cilleruelo and M. Z. Garaev on exponential congruences and on cardinalities of products of short intervals, some double character sum estimates of J. Friedlander and H. Iwaniec and some results of M.-C. Chang and A. A. Karatsuba on character sums twisted with the divisor function.

UDC: 511.3+511.524

Received in January 2012

Language: English

DOI: 10.1134/S0371968513010056


 English version:
Proceedings of the Steklov Institute of Mathematics, 2013, 280, 61–90

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024